Espectro clínico-genético del síndrome de QT largo en la población pediátrica de Asturias
pdf

Palabras clave

síndrome QTL, QTc, canalopatía, betabloqueantes.

Cómo citar

1.
Martínez García C, Rodriguez-Noriega Béjar L, Persinal Medina M, Ibañez Fernández MA, Riaño Galán I, Fernández Barrio B. Espectro clínico-genético del síndrome de QT largo en la población pediátrica de Asturias. Bol Pediatr. 2025;65(272):73-79. doi:10.63788/qth2fy93

Resumen

El síndrome de QT largo (SQTL) es una canalopatía hereditaria que favorece el desarrollo de arritmias ventriculares. Se han descrito hasta 16 genes involucrados en el desarrollo del SQTL, de manera que se asocia un amplio espectro clínico que dificulta su manejo terapéutico. Este trabajo estudia la población pediátrica asturiana diagnosticada de SQTL para describir sus características, espectro fenotípico-genético y tratamiento.

Se identificaron 27 casos de SQTL en Área Sanitaria IV, la población afectada fue mayoritariamente masculina, de etnia gitana e identificada a través de otros familiares afectados. Los principales espectros fueron SQTL1-KCNQ1, SQTL2-KCNH2 y SQTL3-SCN5A, siendo de más alto riesgo los dos primeros. Hubo predominancia del SQTL2-KCNH2 debido a la mutación p.Gly262AlasTer98, muy bien conservada en la etnia gitana y que se describe por primera vez en esta población. Estos pacientes recibieron tratamiento con betabloqueantes, principalmente bisoprolol y propranolol. Este estudio destaca la diversidad genética y fenotípica del SQTL en Asturias, enfatizando la necesidad de una vigilancia y tratamiento adecuados para la prevención de eventos letales.

pdf

Referencias

Sarquella-Brugada G, Campuzano O, Brugada R. Trastornos del ritmo cardíaco más frecuentes en pediatría: síndrome de QT largo. Pediatr Integral. 2012; XVI(8): 617-21.

Baltogiannis G, Conte G, Sieira J, De Ferrari GM, Brugada P. Sudden cardiac death and channelopathies. Front Cardiovasc Med. 2020; 7: 605834. https://doi.org/10.3389/fcvm.2020.605834

Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009; 120(18): 1761-7. https://doi.org/10.1161/CIRCULATIONAHA.109.863209

Wilde AAM, Amin AS, Postema PG. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart. 2022; 108(5): 332. https://doi.org/10.1136/heartjnl-2020-318259

Bazett HC. An analysis of time relations of electrocardiograms. Heart. 1920; 353-70.

Schwartz PJ, Crotti L, Insolia R. Long QT syndrome: From genetics to management. Circ Arrhythm Electrophysiol. 2012; 5(4): 868. https://doi.org/10.1161/CIRCEP.111.962019

Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003; 348(19): 1866-74. https://doi.org/10.1056/NEJMoa022147

Goldenberg I, Moss AJ, Peterson DR, McNitt S, Zareba W, Andrews ML, et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation. 2008; 117(17): 2184-91. https://doi.org/10.1161/CIRCULATIONAHA.107.701243

Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome: An update. Circulation. 1993; 88(2): 782-4.

https://doi.org/10.1161/01.CIR.88.2.782

Schwartz PJ, Spazzolini C, Crotti L, Bathen J, Amlie JP, Timothy K, et al. The Jervell and Lange-Nielsen syndrome: Natural history, molecular basis, and clinical outcome. Circulation. 2006; 113(6): 783-90. https://doi.org/10.1161/CIRCULATIONAHA.105.592899

Schwartz PJ, Lia C. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 2011; 124: 2181- 4. https://doi.org/10.1161/CIRCULATIONAHA.111.062182

Kwok SY, Liu APY, Chan CYY, Lun KS, Fung JLF, Mak CCY, et al. Clinical and genetic profile of congenital long qt syndrome in hong kong: A 20-year experience in paediatrics. Hong Kong Medical Journal. 2018; 24(6): 561-70. https://doi.org/10.12809/hkmj187487

Zullo A, Frisso G, Detta N, Sarubbi B, Romeo E, Cordella A, et al. Allelic complexity in long QT syndrome: A family-case study. Int J Mol Sci. 2017; 18(8): 1633. https://doi.org/10.3390/ijms18081633

Lahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, et al. Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome. Circulation. 2020; 142(4): 324. https://doi.org/10.1161/CIRCULATIONAHA.120.045956

Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, et al. An International, multicentered, evidence-based reapprai- sal of genes reported to cause congenital long QT syndrome. Circulation. 2020; 141(6): 418. https://doi.org/10.1161/CIRCULATIONAHA.119.043132

Zeppenfeld K, Tfelt-Hansen J, De Riva M, Winkel BG, Behr ER, Blom NA, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022; 43(40): 3997. https://doi.org/10.1093/eurheartj/ehac262

Mazzanti A, Trancuccio A, Kukavica D, Pagan E, Wang M, Mohsin M, et al. Independent validation and clinical implications of the risk prediction model for long QT syndrome (1-2-3-LQTS- Risk). Europace. 2021; 24: 697-8. https://doi.org/10.1093/europace/euac012

Costa S, Saguner AM, Gasperetti A, Akdis D, Brunckhorst C, Duru F. The link between sex hormones and susceptibility to cardiac arrhythmias: From molecular basis to clinical implica- tions. Front Cardiovasc Med. 2021; 8: 644279. https://doi.org/10.3389/fcvm.2021.644279

Sistema de Información en Enfermedades Raras de Asturias. Dirección General de Salud Pública. Enfermedades raras en Asturias, 1996-2012 [Internet]. [citado 30 Abr 2024]. Disponible en: www.astursalud.es

Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome clinical impact. Circulation. 1999; 99(4): 529-33. https://doi.org/10.1161/01.CIR.99.4.529

Modell SM, Bradley DJ, Lehmann MH. Genetic testing for long QT syndrome and the category of cardiac ion channelopathies. PLoS Curr. 2012; 4: e4f9995f69e6c7. https://doi.org/10.1371/4f9995f69e6c7

Ono M, Burgess DE, Schroder EA, Elayi CS, Anderson CL, January CT, et al. Long QT syndrome type 2: Emerging strategies for correcting class 2 KCNH2 (HERG) mutations and identifying new patients. Biomolecules. 2020; 10(8): 1144. https://doi.org/10.3390/biom10081144

Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C, et al. High efficacy of β-blockers in long-QT syndrome type 1: Contribution of noncompliance and QT-prolonging drugs to the occurrence of β-blocker treatment 'failures'. Circulation. 2009; 119(2): 215-21. https://doi.org/10.1161/CIRCULATIONAHA.108.772533

Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004; 292(11): 1341-4. https://doi.org/10.1001/jama.292.11.1341

Lorca R, Junco-Vicente A, Pérez-Pérez A, Pascual I, Persia-Paulino YR, González-Urbistondo F, et al. KCNH2 p.Gly262AlafsTer98: A new threatening variant associated with long QT syndrome in a Spanish cohort. Life (Basel). 2022; 12(4): 556. https://doi.org/10.3390/life12040556

Cheng H, Charles I, James AF, Abdala AP, Hancox JC. Delayed ventricular repolarization and sodium channel current modification in a mouse model of Rett syndrome. Int J Mol Sci. 2022; 23(10): 5735. https://doi.org/10.3390/ijms23105735

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2025 Boletín de Pediatría